

Mathematical definitions of the basic properties of the relation **R** on the set **A**:

- Let R be a relation on A, then
 - (1) *R* is *reflexive* on *A* if and only if $I_A \subseteq R$ *R* at least contains all reflexive pairs (x,x)
 - (2) *R* is *irreflexive* on *A* if and only if $R \cap I_A = \emptyset$ R does not contain any (x,x)
 - (3) R is symmetric on A if and only if R=R⁻¹
 - (4) R is antisymmetric on A if and only if $R \cap R^{-1} \subseteq I_A$

R and its inverse relation contains only reflexive pairs $\langle x, x \rangle$

(5) *R* is *transitive* on *A if and only if R*∘*R*⊂*R*

4.3.1 Definition and Determination of Relation Properties **Proof of Reflexivity of R on A**

To prove that R is reflexive on A: • Proof Pattern: For any x, $x \in A \Rightarrow \dots \Rightarrow \dots \Rightarrow \langle x, x \rangle \in R$ Assume reasoning process Conclusion

Example: Prove that if $I_A \subseteq R$, then R is reflexive on A. **Proof:** For any x, $x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$ Therefore, R is reflexive on A.

To prove that R is symmetric on A: • Proof Pattern: For any $\langle x, y \rangle$ $\langle x, y \rangle \in R \implies \dots \implies \langle y, x \rangle \in R$ Assumption Reasoning process Conclusion **Example:** Prove that if $R=R^{-1}$, then R is symmetric on A. Proof: Let $\langle x, y \rangle$ $\langle x, y \rangle \in R \implies \langle y, x \rangle \in R^{-1} \implies \langle y, x \rangle \in R$ Therefore, *R* is symmetric on *A*.

4.3.1 Definition and Determination of Relation Properties **Proof of antisymmetric of** *R* **on** *A*

• Proof Pattern: For any $\langle x, y \rangle$ $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow \dots \dots \dots \Rightarrow x = y$ Assumption Reasoning process Conclusion

Example: Prove that if $R \cap R^{-1} \subseteq I_A$, *then R is* antisymmetric on *A*.

Proof: For any $\langle x, y \rangle$ $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1}$ $\Rightarrow \langle x, y \rangle \in R \cap R^{-1} \Rightarrow \langle x, y \rangle \in I_A \Rightarrow x = y$ Therefore, *R* is antisymmetric on *A*.

4.3.1 Definition and Determination of Relation Properties **Proof of transitive of** *R* **on** *A*

To prove that **R** is transitive on **A**:

• Proof Pattern:

For any <*x*, *y*>, <*y*, *z*>

 $\langle x, y \rangle \in R \land \langle y, z \rangle \in R \Rightarrow \dots \Rightarrow \langle x, z \rangle \in R$

Assumption Reasoning process Conclusion

Second Straight Stra

G Comparison Table of Properties of Relation *R*

Relation Properties	Express ion	Definition	Relation Matrix	Relation Diagram	
Reflexivity	I _A <u>⊂</u> R	∀ x∈ A, ∃ <x,x>∈R</x,x>	Main diagonal elements are 1	Every vertex has a loop	
Irreflexivity	R∩I_A= Ø	∀ x∈A, ∃<x,x>∉R</x,x>	Main diagonal elements are 0	No loops at any vertex	
Symmetry	R= <i>R</i> −1	lf <x,y>∈R, then<y,x>∈R</y,x></x,y>	The matrix is a symmetric matrix	If there is an edge between two vertices, it must be a directed edge (no undirected edge)	

G Comparison Table of Properties of Relation *R* (cont.)

Relation Properties	Express ion	Definition	Relation Matrix	Relation Diagram	
Antisymmet ry	R∩R ⁻¹ ⊆ I _A	If Expression <x,y>∈R and x≠y, then <y,x>∉R</y,x></x,y>	<i>If r_{ij}=</i> 1, and <i>i≠j</i> , Then r _{ji} =0	If there is an edge between two points, it must be a directed edge (no bidirectional edges)	
Transitivity	R∘R <u>⊂</u> R	lf <x,y>∈Rand<y,z>∈R, then<x,z>∈R</x,z></y,z></x,y>	<i>If M_{ij}</i> ² =1, <i>M_{ij}</i> =1	If there is an edge from vertex x_i to x_j , and an edge from x_j to x_k , then there is also an edge from x_i to x_k .	

Example 8: Determine the properties of the relationship in the figure below and explain the reasoning.

- (a) Neither reflexive nor antireflexive; symmetric, not antisymmetric; not transitive.
- (b) Antireflexive, not reflexive; antisymmetric, not symmetric; transitive.
- (c) Reflexive, not antireflexive; antisymmetric, not symmetric; not transitive.

4 Relation Between Operations and Properties

	Reflexivity	Irreflexivity	Symmetry	Antisymmetry	Transitivity
R_{1}^{-1}			√	√	√
$R_1 \cap R_2$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$R_1 \cup R_2$	\checkmark	\checkmark	\checkmark	×	×
$R_1 - R_2$	\times	\checkmark	\checkmark	\checkmark	×
R ₁ °R ₂	\checkmark	×	ל	×	×

4.3.1 Definition and Determination of Relation Properties

- •Reflexivity and Irreflexivity
- •Symmetry and Antisymmetry
- Transitivity
- 4.3.2 Closure of Relations
 - Definition of Closure
 - Closure Calculation
 - •Warshall's Algorithm

Definition 4.17: r(R), s(R) and t(R)

Let *R* be a relation on a non-empty set *A*. The **reflexive** (symmetric or transitive) closure of *R* is a relation *R'* on *A*, such that *R'* satisfies the following conditions:

- *R'* is reflexive (symmetric or transitive).
- *R*⊆*R*′
- For any reflexive (symmetric or transitive) relation R'' on A that contains R, we have $R' \subseteq R''$.

The reflexive closure of R is usually denoted by r(R), the symmetric closure by s(R), and the transitive closure by t(R).

4.3.2 Closure of Relations • Construction of the Transitive Closure of Relation R

- For a relation *R* on a non-empty set *A*, the reflexive closure *r(R)*, symmetric closure *s(R)*, and transitive closure *t(R)* can be constructed.
- The *reflexive closure R'* of *R* is a relation obtained by adding all necessary pairs to ensure reflexivity, and it is the smallest superset. It can be defined as: $R'=R \cup \{(a,a) \mid a \in A\}$
- The symmetric closure R' of R is a relation obtained by adding all necessary pairs to ensure symmetry, and it is the smallest superset. It can be defined as: $R'=R \cup \{(b,a) | (a,b) \in R\}$

The transitive closure R' of R is a relation obtained by adding all necessary pairs to ensure transitivity, and it is the smallest superset. It can be defined as:

For each pair of elements $a,c \in A$, if there exist one or more elements $b_1, b_2, ..., b_n$ such that $(a,b_1), (b_1,b_2), ..., (b_{n-1},b_n), (b_n,c)$ are all in R, then (a,c) should be in R'.

*i*Explanation:

- For a finite set A (where |A|=n), the union in (3) will have at most Rⁿ.
- If R is reflexive, then r(R)=R; If R is symmetric, then s(R)=R; If R is transitive, then t(R)=R.

4.3.2 Closure of Relations Proof of Closure Theorem

- Proof of Theorem 4.7 (Proving (1)).
 - Proof of (1) $r(R)=R \cup R^0$, It is sufficient to show that $R \cup R^0$ satisfies the closure definition.
 - Proof that $R \cup R^0$ is a reflexive relation Since $R \cup R^0$ contains R, and by $I_A \subseteq R \cup R^0$, we can conclude that $R \cup R^0$ is reflexive on A.
 - Proof that $R \cup R^0$ is the smallest reflexive relation containing R. We need to show that no reflexive relation smaller than $R \cup R^0$ exists that contains R.

Assume R' is a reflexive relation that contains R and and is smaller than $R \cup R^0$ $I_A \subseteq R'$, $R \subseteq R'$, Therefore, we have $R \cup R^0 = I_A \cup R \subseteq R'$, which contradicts the assumption that R' is smaller than $R \cup R^0$.